早期,人类必须通过如轮子、火之类的工具和武器与自然做斗争。15世纪,古腾堡发明的印刷机使人们的生活发生了广泛的变化。19世纪,工业革命利用自然资源发展电力,这促进了制造、交通和通信的发展。20世纪,人类通过对天空以及太空的探索,通过计算机的发明及其微型化,进而成为个人计算机、互联网、万维网和智能手机,持续不断地向前进。过去的60年已经见证了一个世界的诞生,这个世界出现了海量的数据、事实和信息,这些数据、事实和信息必须转换为知识(其中一个实例是包含在人类基因编码中的数据,如图1.0所示)。本章介绍了人工智能学科的概念性框架,并阐述了其成功应用的领域和方法、近期的历史和未来的前景。
图1 包含在人类基因编码中的数据
对人工智能的理解因人而异。一些人认为人工智能是通过非生物系统实现的任何智能形式的同义词;他们坚持认为,智能行的实现方式与人类智能实现的机制是否相同是无关紧要的。而另一些人则认为,人工智能系统必须能够模仿人类智能。没有人会就是否要研究人工智能或实现人工智能系统进行争论,我们应首先理解人类如何获得智能行为(即我们必须从智力、科学、心理和技术意义上理解被视为智能的活动),这对我们才是大有裨益的。例如,如果我们想要开发一个能够像人类一样行走的机器人,那么首先必须从各个角度了解行走的过程,但是不能通过不断地声明和遵循一套规定的正式规则来完成运动。事实上,人们越要求人类专家解释他们如何在学科或事业中获得了如此表现,这些人类专家就越可能失败。例如,当人们要求某些战斗机飞行员解释他们的飞行能力时,他们的表现实际上会变差 [1]。专家的表现并不来自于不断的、有意识的分析,而是来自于大脑的潜意识层面。你能想象高峰时段在高速公路上开车并有意识地权衡控制车辆的每个决策吗?
想象一下力学教授和独轮脚踏车手的故事[2]。当力学教授试图骑独轮车时,如果人们要求教授引用力学原理,并将他成功地骑在独轮车上这个能力归功于他知道这些原理,那么他注定要失败。同样,如果独轮脚踏车手试图学习这些力学知识,并在他展现车技时应用这些知识,那么他也注定是失败的,也许还会发生悲剧性的事故。关键点是,许多学科的技能和专业知识是在人类的潜意识中发展和存储的,而不是通过明确请求记忆或使用基本原理来学会这些技能的。
1.1 人工智能的定义
在日常用语中,“人工”一词的意思是合成的(即人造的),这通常具有负面含义,即“人造物体的品质不如自然物体。但是,人造物体通常优于真实或自然物体。例如,人造花是用丝和线制成的类似芽或花的物体,它不需要以阳光或水分作为养料,却可以为家庭或公司提供实用的装饰功能。虽然人造花给人的感觉以及香味可能不如自然的花朵,但它看起来和真实的花朵如出一辙。
另一个例子是由蜡烛、煤油灯或电灯泡产生的人造光。显然,只有当太阳出现在天空时,我们才可以获得阳光,但我们随时都可以获得人造光,从这一点来讲,人造光是优于自然光的。
最后,思考一下,人工交通装置(如汽车、火车、飞机和自行车)与跑步、步行和其他自然形式的交通(如骑马)相比,在速度和耐久性方面有很多优势。但是,人工形式的交通也有一些显著的缺点——地球上无处不在的高速公路,充满了汽车尾气的大气环境,人们内心的宁静(以及睡眠)常常被飞机的喧嚣打断[3]。
如同人造光、人造花和交通一样,人工智能不是自然的,而是人造的。要确定人工智能的优点和缺点,你必须首先理解和定义智能。
1.2 思维是什么?智能是什么?
智能的定义可能比人工的定义更难以捉摸。斯腾伯格(R. Sternberg)就人类意识这个主题给出了以下有用的定义:
我们都很熟悉标准化测试的问题,比如,给定如下数列:1,3,6,10,15,21。要求提供下一个数字。
你也许会注意到连续数字之间的差值的间隔为1。例如,从1到3差值为2,从3到6差值为3,以此类推。因此问题正确的答案是28。这个问题旨在衡量我们在模式中识别突出特征方面的熟练程度。我们通过经验来发现模式。
不妨用下面的数列试试你的运气:
a.1, 2, 2, 3, 3, 3, 4, 4, 4, 4, ?
b.2, 3, 3, 5, 5, 5, 7, 7, 7, 7, ?
既然已经确定了智能的定义,那么你可能会有以下的疑问。
(1)如何判定一些人(或事物)是否有智能?
(2)动物是否有智能?
(3)如果动物有智能,如何评估它们的智能?
大多数人可以很容易地回答出第一个问题。我们通过与其他人交流(如做出评论或提出问题)来观察他们的反应,每天多次重复这一过程,以此评估他们的智力。虽然我们没有直接进入他们的思想,但是相信通过问答这种间接的方式,可以为我们提供内部大脑活动的准确评估。
如果坚持使用问答的方式来评估智力,那么如何评估动物智力呢?如果你养过宠物,那么你可能已经有了答案。小狗似乎记得一两个月没见到过的人,并且可以在迷路后找到回家的路。小猫在晚餐时间听到开罐头的声音时常常表现得很兴奋。这只是简单的巴甫洛夫反射的问题,还是小猫有意识地将罐头的声音与晚餐的快乐联系起来了?
关于动物智力,有一则有趣的轶事:大约在1900年,德国柏林有一匹马,人称“聪明的汉斯”(Clever Hans),据说这匹马精通数学(见图1.1)。
图2“聪明的汉斯”(Clever Hans)—— 一匹马做演算?
当汉斯做加法或计算平方根时,观众都惊呆了。此后,人们观察到,如果没有观众,汉斯的表现不会很出色。事实上,汉斯的天才在于它能够识别人类的情感,而非精通数学。马一般都具有敏锐的听觉,当汉斯接近正确的答案时,观众们都变得相对兴奋,心跳加速。也许,汉斯有一种出奇的能力,它能够检测出这些变化,从而获得正确的答案。[5]虽然你可能不愿意把汉斯的这种行为归于智能,但在得出结论之前,你应该参考一下斯腾伯格早期对智能的定义。
有些生物只体现出群体智能。例如,蚂蚁是一种简单的昆虫,单只蚂蚁的行为很难归类在人工智能的主题中。但是,蚁群对复杂的问题显示出了非凡的解决能力,如从巢到食物源之间找到一条最佳路径、携带重物以及组成桥梁。集体智慧源于个体昆虫之间的有效沟通。第12章在对高级搜索方法进行讨论时,将相对较多地探讨涌现智能和集群智能。
脑的质量大小以及脑与身体的质量比通常被视为动物智能的指标。海豚在这两个指标上都与人类相当。海豚的呼吸是自主控制的,这可以说明其脑的质量过大,还可以说明一个有趣的事实,即海豚的两个半脑交替休眠。在动物自我意识测试中,例如镜子测试,海豚得到了很好的分数,它们认识到镜子中的图像实际上是它们自己的形象。海洋世界等公园的游客可以看到,海豚可以玩复杂的戏法。这说明海豚具有记住序列和执行复杂身体运动的能力。使用工具是智能的另一个“试金石”,并且这常常用于将直立人与先前的人类祖先区别开来。海豚与人类都具备这个特质。例如,在觅食时,海豚使用深海海绵(一种多细胞动物)来保护它们的嘴。显而易见,智能不是人类独有的特性。在某种程度上,许多生命形式是具有智能的。
你应该问自己以下问题:“你认为有生命是拥有智能的必要先决条件吗?”或“无生命物体,例如计算机,可能拥有智能吗?”人工智能宣称的目标是创建可以与人类的思维媲美的计算机软件和(或)硬件系统,换句话说,即表现出与人类智能相关的特征。一个关键的问题是“机器能思考吗?”更一般地来说,你可能会问,“人类、动物或机器拥有智能吗?”
在这个节点上,强调思考和智能之间的区别是明智的。思考是推理、分析、评估和形成思想和概念的工具。并不是所有能够思考的物体都有智能。智能也许就是高效以及有效的思维。许多人对待这个问题时怀有偏见,他们说:“计算机是由硅和电源组成的,因此不能思考。”或者走向另一个极端:“计算机表现得比人快,因此也有着比人更高的智商。”真相很可能存在于这两个极端之间。
正如我们所讨论的,不同的动物物种具有不同程度的智能。我们将阐述人工智能领域开发的软件和硬件系统,它们也具有不同程度的智能。我们对评估动物的智商不太关注,尚未发展出标准化的动物智商测试,但是对确定机器智能是否存在的测试非常感兴趣。
也许拉斐尔(Raphael)[6]的说法最贴切:“人工智能是一门科学,这门科学让机器做人类需要智能才能完成的事。”
(文章摘选自人工智能(第2版))
评论留言